Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Viruses ; 12(6)2020 06 10.
Article in English | MEDLINE | ID: covidwho-1726021

ABSTRACT

The ongoing Coronavirus Disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) signals an urgent need for an expansion in treatment options. In this study, we investigated the anti-SARS-CoV-2 activities of 22 antiviral agents with known broad-spectrum antiviral activities against coronaviruses and/or other viruses. They were first evaluated in our primary screening in VeroE6 cells and then the most potent anti-SARS-CoV-2 antiviral agents were further evaluated using viral antigen expression, viral load reduction, and plaque reduction assays. In addition to remdesivir, lopinavir, and chloroquine, our primary screening additionally identified types I and II recombinant interferons, 25-hydroxycholesterol, and AM580 as the most potent anti-SARS-CoV-2 agents among the 22 antiviral agents. Betaferon (interferon-ß1b) exhibited the most potent anti-SARS-CoV-2 activity in viral antigen expression, viral load reduction, and plaque reduction assays among the recombinant interferons. The lipogenesis modulators 25-hydroxycholesterol and AM580 exhibited EC50 at low micromolar levels and selectivity indices of >10.0. Combinational use of these host-based antiviral agents with virus-based antivirals to target different processes of the SARS-CoV-2 replication cycle should be evaluated in animal models and/or clinical trials.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Animals , Antigens, Viral/immunology , Betacoronavirus/immunology , Betacoronavirus/metabolism , COVID-19 , Chlorocebus aethiops , Coronavirus Infections/virology , Humans , Interferons/metabolism , Lipogenesis/drug effects , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2 , Signal Transduction/drug effects , Vero Cells , Viral Load/drug effects , Viral Plaque Assay , Virus Replication/drug effects
2.
Int J Mol Sci ; 23(2)2022 Jan 14.
Article in English | MEDLINE | ID: covidwho-1625084

ABSTRACT

Viral infections represent a serious threat to the world population and are becoming more frequent. The search and identification of broad-spectrum antiviral molecules is necessary to ensure new therapeutic options, since there is a limited availability of effective antiviral drugs able to eradicate viral infections, and consequently due to the increase of strains that are resistant to the most used drugs. Recently, several studies on antimicrobial peptides identified them as promising antiviral agents. In detail, amphibian skin secretions serve as a rich source of natural antimicrobial peptides. Their antibacterial and antifungal activities have been widely reported, but their exploitation as potential antiviral agents have yet to be fully investigated. In the present study, the antiviral activity of the peptide derived from the secretion of Rana tagoi, named AR-23, was evaluated against both DNA and RNA viruses, with or without envelope. Different assays were performed to identify in which step of the infectious cycle the peptide could act. AR-23 exhibited a greater inhibitory activity in the early stages of infection against both DNA (HSV-1) and RNA (MeV, HPIV-2, HCoV-229E, and SARS-CoV-2) enveloped viruses and, on the contrary, it was inactive against naked viruses (PV-1). Altogether, the results indicated AR-23 as a peptide with potential therapeutic effects against a wide variety of human viruses.


Subject(s)
Amphibian Proteins/pharmacology , Antimicrobial Peptides/pharmacology , Antiviral Agents/pharmacology , Ranidae/metabolism , Animals , Antimicrobial Cationic Peptides/pharmacology , Cell Survival/drug effects , Chlorocebus aethiops , DNA Viruses/drug effects , RNA Viruses/drug effects , SARS-CoV-2/drug effects , Vero Cells , Viral Envelope/drug effects , Viral Plaque Assay , Virus Diseases/drug therapy
3.
Viruses ; 14(1)2021 12 30.
Article in English | MEDLINE | ID: covidwho-1580402

ABSTRACT

SARS-CoV-2, like other RNA viruses, has a propensity for genetic evolution owing to the low fidelity of its viral polymerase. Several recent reports have described a series of novel SARS-CoV-2 variants. Some of these have been identified as variants of concern (VOCs), including alpha (B.1.1.7, Clade GRY), beta (B.1.351, Clade GH), gamma (P.1, Clade GR), and delta (B.1.617.2, Clade G). VOCs are likely to have some effect on transmissibility, antibody evasion, and changes in therapeutic or vaccine effectiveness. However, the physiological and virological understanding of these variants remains poor. We demonstrated that these four VOCs exhibited differences in plaque size, thermal stability at physiological temperature, and replication rates. The mean plaque size of beta was the largest, followed by those of gamma, delta, and alpha. Thermal stability, evaluated by measuring infectivity and half-life after prolonged incubation at physiological temperature, was correlated with plaque size in all variants except alpha. However, despite its relatively high thermal stability, alpha's small plaque size resulted in lower replication rates and fewer progeny viruses. Our findings may inform further virological studies of SARS-CoV-2 variant characteristics, VOCs, and variants of interest. These studies are important for the effective management of the COVID-19 pandemic.


Subject(s)
SARS-CoV-2/physiology , Animals , Chlorocebus aethiops , Humans , SARS-CoV-2/classification , Temperature , Vero Cells , Viral Plaque Assay , Virus Replication
4.
Int J Biol Macromol ; 198: 101-110, 2022 Feb 15.
Article in English | MEDLINE | ID: covidwho-1587672

ABSTRACT

Respiratory infected by COVID-19 represents a major global health problem at moment even after recovery from virus corona. Since, the lung lesions for infected patients are still sufferings from acute respiratory distress syndrome including alveolar septal edema, pneumonia, hyperplasia, and hyaline membranes Therefore, there is an urgent need to identify additional candidates having ability to overcome inflammatory process and can enhance efficacy in the treatment of COVID-19. The polypenolic extracts were integrated into moeties of bovine serum albumin (BSA) and then were coated by chitosan as a mucoadhesion polymer. The results of interleukin-6, and c-reactive protein showed significant reduction in group treated by Encap. SIL + CUR (64 ± 0.8 Pg/µL & 6 ± 0.5 µg/µL) compared to group treated by Cham. + CUR (102 ± 0.8 Pg/µL & 7 ± 0.5 µg/µL) respectively and free capsules (with no any drug inside) (148 ± 0.6 Pg/µL & 10 ± 0.6 µg/µL) respectively. Histopathology profile was improved completely. Additionally, encapsulating silymarin showed anti-viral activity in vitro COVID-19 experiment. It can be summarized that muco-inhalable delivery system (MIDS) loaded by silymarin can be used to overcome inflammation induced by oleic acid and to overcome COVID-19.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Curcumin/pharmacology , Lung Injury/drug therapy , Nanoparticles/chemistry , Silymarin/pharmacology , Administration, Inhalation , Animals , Anti-Inflammatory Agents/administration & dosage , Antiviral Agents/administration & dosage , C-Reactive Protein/metabolism , Chamomile/chemistry , Chitosan/chemistry , Chlorocebus aethiops , Curcumin/administration & dosage , Drug Delivery Systems/methods , Flavonoids/analysis , Flavonoids/chemistry , Interleukin-6/metabolism , Lung Injury/blood , Lung Injury/chemically induced , Lung Injury/pathology , Male , Mice , Milk Thistle/chemistry , Nanoparticles/administration & dosage , Oleic Acid/toxicity , Silymarin/administration & dosage , Vero Cells , Viral Plaque Assay
5.
Drug Discov Ther ; 15(5): 268-272, 2021 Nov 21.
Article in English | MEDLINE | ID: covidwho-1542927

ABSTRACT

The inhibitory activity of electrolyzed reduced water (ERW) against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which is the etiological agent responsible for coronavirus disease 2019 (COVID-19), was tested in vitro on Vero E6 cells using a plaque assay. Infectious virus titers of cells treated with ERW 100%, 50% and 33.3% solutions and phosphate buffered saline (PBS, negative control) and exposed to the virus suspension for 60 seconds were 2.25, 2.65, 3.21 and 7.38, respectively. ERW has a high pH and low surface tension. It is considered that the alkaline property of ERW breaks down phospholipids and proteins of envelopes. The role of pH and reducibility on the virucidal effect of ERW should be further evaluated. This study provides a foundation for utilizing ERW as an effective antiviral aqueous solution in a variety of applications.


Subject(s)
Antiviral Agents/pharmacology , SARS-CoV-2/drug effects , Water/pharmacology , Animals , Chlorocebus aethiops , Hydrogen-Ion Concentration , Vero Cells/virology , Viral Plaque Assay
6.
J Clin Lab Anal ; 36(1): e24146, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1536155

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19) and is capable of human-to-human transmission and rapid global spread. Thus, the establishment of high-quality viral detection and quantification methods, and the development of anti-SARS-CoV-2 agents are critical. METHODS: Here, we present the rapid detection of infectious SARS-CoV-2 particles using a plaque assay with 0.5% agarose-ME (Medium Electroosmosis) as an overlay medium. RESULTS: The plaques were capable of detecting the virus within 36-40 h post-infection. In addition, we showed that a monogalactosyl diacylglyceride isolated from a microalga (Coccomyxa sp. KJ) could inactivate the clinical isolates of SARS-CoV-2 in a time- and concentration-dependent manner. CONCLUSIONS: These results would allow rapid quantification of the infectious virus titers and help develop more potent virucidal agents against SARS-CoV-2.


Subject(s)
Antiviral Agents/pharmacology , Galactose/analogs & derivatives , Glycerides/pharmacology , Microalgae/chemistry , SARS-CoV-2/drug effects , Animals , Antiviral Agents/chemistry , COVID-19/virology , Chlorocebus aethiops , Chlorophyta/chemistry , Galactose/chemistry , Galactose/pharmacology , Glycerides/chemistry , Humans , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Vero Cells , Viral Plaque Assay
7.
J Virol ; 95(21): e0135721, 2021 10 13.
Article in English | MEDLINE | ID: covidwho-1476390

ABSTRACT

One of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virulence factors is the ability to interact with high affinity to the ACE2 receptor, which mediates viral entry into cells. The results of our study demonstrate that within a few passages in cell culture, both the natural isolate of SARS-CoV-2 and the recombinant cDNA-derived variant acquire an additional ability to bind to heparan sulfate (HS). This promotes a primary attachment of viral particles to cells before their further interactions with the ACE2. Interaction with HS is acquired through multiple mechanisms. These include (i) accumulation of point mutations in the N-terminal domain (NTD) of the S protein, which increases the positive charge of the surface of this domain, (ii) insertions into the NTD of heterologous peptides containing positively charged amino acids, and (iii) mutation of the first amino acid downstream of the furin cleavage site. This last mutation affects S protein processing, transforms the unprocessed furin cleavage site into the heparin-binding peptide, and makes viruses less capable of syncytium formation. These viral adaptations result in higher affinity of viral particles to heparin, dramatic increase in plaque sizes, more efficient viral spread, higher infectious titers, and 2 orders of magnitude higher infectivity. The detected adaptations also suggest an active role of NTD in virus attachment and entry. As in the case of other RNA-positive (RNA+) viruses, evolution to HS binding may result in virus attenuation in vivo. IMPORTANCE The spike protein of SARS-CoV-2 is a major determinant of viral pathogenesis. It mediates binding to the ACE2 receptor and, later, fusion of viral envelope and cellular membranes. The results of our study demonstrate that SARS-CoV-2 rapidly evolves during propagation in cultured cells. Its spike protein acquires mutations in the NTD and in the P1' position of the furin cleavage site (FCS). The amino acid substitutions or insertions of short peptides in NTD are closely located on the protein surface and increase its positive charge. They strongly increase affinity of the virus to heparan sulfate, make it dramatically more infectious for the cultured cells, and decrease the genome equivalent to PFU (GE/PFU) ratio by orders of magnitude. The S686G mutation also transforms the FCS into the heparin-binding peptide. Thus, the evolved SARS-CoV-2 variants efficiently use glycosaminoglycans on the cell surface for primary attachment before the high-affinity interaction of the spikes with the ACE2 receptor.


Subject(s)
Evolution, Molecular , Heparitin Sulfate/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism , Adaptation, Biological , Animals , Binding Sites , Chlorocebus aethiops , Cytopathogenic Effect, Viral , DNA, Complementary , Furin/metabolism , Heparin/metabolism , Host-Pathogen Interactions , Protein Binding , Protein Domains , Protein Processing, Post-Translational , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Serial Passage , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Vero Cells , Viral Plaque Assay , Virus Attachment
8.
J Photochem Photobiol B ; 224: 112319, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1433572

ABSTRACT

The germicidal properties of short wavelength ultraviolet C (UVC) light are well established and used to inactivate many viruses and other microbes. However, much less is known about germicidal effects of terrestrial solar UV light, confined exclusively to wavelengths in the UVA and UVB regions. Here, we have explored the sensitivity of the human coronaviruses HCoV-NL63 and SARS-CoV-2 to solar-simulated full spectrum ultraviolet light (sUV) delivered at environmentally relevant doses. First, HCoV-NL63 coronavirus inactivation by sUV-exposure was confirmed employing (i) viral plaque assays, (ii) RT-qPCR detection of viral genome replication, and (iii) infection-induced stress response gene expression array analysis. Next, a detailed dose-response relationship of SARS-CoV-2 coronavirus inactivation by sUV was elucidated, suggesting a half maximal suppression of viral infectivity at low sUV doses. Likewise, extended sUV exposure of SARS-CoV-2 blocked cellular infection as revealed by plaque assay and stress response gene expression array analysis. Moreover, comparative (HCoV-NL63 versus SARS-CoV-2) single gene expression analysis by RT-qPCR confirmed that sUV exposure blocks coronavirus-induced redox, inflammatory, and proteotoxic stress responses. Based on our findings, we estimate that solar ground level full spectrum UV light impairs coronavirus infectivity at environmentally relevant doses. Given the urgency and global scale of the unfolding SARS-CoV-2 pandemic, these prototype data suggest feasibility of solar UV-induced viral inactivation, an observation deserving further molecular exploration in more relevant exposure models.


Subject(s)
Coronavirus Infections/prevention & control , Coronavirus NL63, Human/radiation effects , Respiratory Tract Infections/prevention & control , SARS-CoV-2/radiation effects , Sunlight , Ultraviolet Rays , Animals , Cell Line , Chlorocebus aethiops , Coronavirus NL63, Human/physiology , Epithelial Cells/virology , Genome, Viral/radiation effects , Humans , SARS-CoV-2/physiology , Transcriptome/radiation effects , Viral Plaque Assay , Virus Inactivation/radiation effects , Virus Replication/radiation effects
9.
Virus Res ; 305: 198563, 2021 11.
Article in English | MEDLINE | ID: covidwho-1415831

ABSTRACT

This study compared the lethality of severe acute respiratory syndrome coronavirus 2 variants belonging to the S, V, L, G, GH, and GR clades using K18-human angiotensin-converting enzyme 2 heterozygous mice. To estimate the 50% lethal dose (LD50) of each variant, increasing viral loads (100-104 plaque-forming units [PFU]) were administered intranasally. Mouse weight and survival were monitored for 14 days. The LD50 of the GH and GR clades was significantly lower than that of other clades at 50 PFU. These findings suggest that the GH and GR clades, which are prevalent worldwide, are more virulent than the other clades.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/mortality , Receptors, Virus/genetics , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Viral Load/genetics , Amino Acid Sequence , Angiotensin-Converting Enzyme 2/metabolism , Animals , Base Sequence , Body Weight , COVID-19/pathology , COVID-19/virology , Chlorocebus aethiops , Gene Expression , Humans , Lethal Dose 50 , Male , Mice , Mice, Transgenic , Phylogeny , Receptors, Virus/metabolism , SARS-CoV-2/classification , SARS-CoV-2/metabolism , Severity of Illness Index , Survival Analysis , Transgenes , Vero Cells , Viral Plaque Assay , Virulence
10.
Virol J ; 18(1): 182, 2021 09 08.
Article in English | MEDLINE | ID: covidwho-1403244

ABSTRACT

BACKGROUND: Traditional medicines based on herbal extracts have been proposed as affordable treatments for patients suffering from coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Teas and drinks containing extracts of Artemisia annua and Artemisia afra have been widely used in Africa in efforts to prevent SARS-CoV-2 infection and fight COVID-19. METHODS: The plant extracts and Covid-Organics drink produced in Madagascar were tested for plaque reduction using both feline coronavirus and SARS-CoV-2 in vitro. Their cytotoxicities were also investigated. RESULTS: Several extracts as well as Covid-Organics inhibited SARS-CoV-2 and FCoV infection at concentrations that did not affect cell viability. CONCLUSIONS: Some plant extracts show inhibitory activity against FCoV and SARS-CoV-2. However, it remains unclear whether peak plasma concentrations in humans can reach levels needed to inhibit viral infection following consumption of teas or Covid-Organics. Clinical studies are required to evaluate the utility of these drinks for COVID-19 prevention or treatment of patients.


Subject(s)
Antiviral Agents/pharmacology , Artemisia/chemistry , Plant Extracts/pharmacology , SARS-CoV-2/drug effects , Animals , Antiviral Agents/chemistry , Cell Line , Cell Survival/drug effects , Coronavirus, Feline/drug effects , Coronavirus, Feline/growth & development , Plant Extracts/chemistry , SARS-CoV-2/growth & development , Viral Plaque Assay
11.
Sci Rep ; 10(1): 22419, 2020 12 29.
Article in English | MEDLINE | ID: covidwho-1387458

ABSTRACT

Survival of respiratory viral pathogens in expelled saliva microdroplets is central to their transmission, yet the factors that determine survival in such microdroplets are not well understood. Here we combine microscopy imaging with virus viability assays to study survival of three bacteriophages suggested as good models for respiratory pathogens: the enveloped Phi6 (a surrogate for SARS-CoV-2), and the non-enveloped PhiX174 and MS2. We measured virus viability in human saliva microdroplets, SM buffer, and water following deposition on glass surfaces at various relative humidities (RH). Saliva and water microdroplets dried out rapidly, within minutes, at all tested RH levels (23%, 43%, 57%, and 78%), while SM microdroplets remained hydrated at RH ≥ 57%. Generally, the survival of all three viruses in dry saliva microdroplets was significantly greater than those in SM buffer and water under all RH (except PhiX174 in water under 57% RH survived the best among 3 media). Thus, atmosphere RH and microdroplet hydration state are not sufficient to explain virus survival, indicating that the virus-suspended medium, and association with saliva components in particular, likely play a role in virus survival. Uncovering the exact properties and components that make saliva a favorable environment for the survival of viruses, in particular enveloped ones like Phi6, is thus of great importance for reducing transmission of viral respiratory pathogens including SARS-CoV-2.


Subject(s)
Bacteriophage phi X 174/metabolism , Levivirus/metabolism , Microbial Viability , SARS-CoV-2/metabolism , Saliva/virology , Bacteriophage phi 6/metabolism , COVID-19/transmission , Environmental Microbiology , Humans , Viral Plaque Assay , Virus Inactivation
12.
STAR Protoc ; 2(4): 100824, 2021 12 17.
Article in English | MEDLINE | ID: covidwho-1373303

ABSTRACT

For a cytopathic virus such as severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), the neutralization capacity of serum from convalescent or vaccinated persons or of therapeutic antibodies can be tested on adherent cell cultures. Here, a simple and tissue culture infectious dose-derived protocol for assessment of neutralization of SARS-CoV-2 is described. Compared with the often applied plaque-forming unit assay, the working load is lower, and fewer manipulations of the infected cultures are required. Hence, the method is safer for the personnel.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/immunology , Neutralization Tests/methods , SARS-CoV-2/immunology , Viral Plaque Assay/methods , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/therapy , Chlorocebus aethiops , Enzyme-Linked Immunosorbent Assay , Humans , Vero Cells
13.
Viruses ; 13(8)2021 08 23.
Article in English | MEDLINE | ID: covidwho-1367925

ABSTRACT

An escalating pandemic of the novel SARS-CoV-2 virus is impacting global health, and effective antivirals are needed. Umifenovir (Arbidol) is an indole-derivative molecule, licensed in Russia and China for prophylaxis and treatment of influenza and other respiratory viral infections. It has been shown that umifenovir has broad spectrum activity against different viruses. We evaluated the sensitivity of different coronaviruses, including the novel SARS-CoV-2 virus, to umifenovir using in vitro assays. Using a plaque assay, we revealed an antiviral effect of umifenovir against seasonal HCoV-229E and HCoV-OC43 coronaviruses in Vero E6 cells, with estimated 50% effective concentrations (EC50) of 10.0 ± 0.5 µM and 9.0 ± 0.4 µM, respectively. Umifenovir at 90 µM significantly suppressed plaque formation in CMK-AH-1 cells infected with SARS-CoV. Umifenovir also inhibited the replication of SARS-CoV-2 virus, with EC50 values ranging from 15.37 ± 3.6 to 28.0 ± 1.0 µM. In addition, 21-36 µM of umifenovir significantly suppressed SARS-CoV-2 virus titers (≥2 log TCID50/mL) in the first 24 h after infection. Repurposing of antiviral drugs is very helpful in fighting COVID-19. A safe, pan-antiviral drug such as umifenovir could be extremely beneficial in combating the early stages of a viral pandemic.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus 229E, Human/drug effects , Coronavirus OC43, Human/drug effects , Indoles/pharmacology , SARS-CoV-2/drug effects , Severe acute respiratory syndrome-related coronavirus/drug effects , Animals , Antiviral Agents/administration & dosage , Cell Survival/drug effects , Chlorocebus aethiops , Coronavirus 229E, Human/physiology , Coronavirus OC43, Human/physiology , Cytopathogenic Effect, Viral/drug effects , Humans , Indoles/administration & dosage , Microbial Sensitivity Tests , Severe acute respiratory syndrome-related coronavirus/physiology , SARS-CoV-2/physiology , Vero Cells , Viral Load/drug effects , Viral Plaque Assay , Virus Replication/drug effects
14.
J Med Virol ; 93(10): 5917-5923, 2021 10.
Article in English | MEDLINE | ID: covidwho-1272212

ABSTRACT

Since the coronavirus disease 2019 (COVID-19) outbreak, laboratory diagnosis has mainly been conducted using reverse-transcription polymerase chain reaction (RT-PCR). Detecting the presence of an infectious virus in the collected sample is essential to analyze if a person can transmit infectious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, there have been no quantitative investigations conducted for infectious SARS-CoV-2 in clinical samples. Therefore, in the present study, a rapid and simple focus-forming assay using the peroxidase-antiperoxidase technique was developed to quantify infectious SARS-CoV-2 titers in 119 samples (n = 52, nasopharyngeal swabs [NPS]; n = 67, saliva) from patients with COVID-19. Furthermore, the study findings were compared with the cycle threshold (Ct) values of real-time RT-PCR. The infectious virus titers in NPS samples and Ct values were inversely correlated, and no infectious virus could be detected when the Ct value exceeded 30. In contrast, a low correlation was observed between the infectious virus titers in saliva and Ct values (r = -0.261, p = 0.027). Furthermore, the infectious virus titers in the saliva were significantly lower than those in the NPS samples. Ten days after the onset of COVID-19 symptoms, the infectious virus was undetectable, and Ct values were more than 30 in NSP and saliva samples. The results indicate that patients whose symptoms subsided 10 days after onset, with Ct values more than 30 in NSP and saliva samples, were less likely to infect others.


Subject(s)
COVID-19 Testing , COVID-19/diagnosis , SARS-CoV-2/isolation & purification , Viral Plaque Assay , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/virology , Child , Child, Preschool , Female , Humans , Infant , Male , Middle Aged , Nasopharynx/virology , Reverse Transcriptase Polymerase Chain Reaction , Saliva/virology , Viral Load , Young Adult
15.
J Med Virol ; 93(7): 4219-4241, 2021 07.
Article in English | MEDLINE | ID: covidwho-1151934

ABSTRACT

The potential zoonotic coronaviruses (SARS-CoV, MERS-CoV, and SARS-CoV-2) are of global health concerns. Early diagnosis is the milestone in their mitigation, control, and eradication. Many diagnostic techniques are showing great success and have many advantages, such as the rapid turnover of the results, high accuracy, and high specificity and sensitivity. However, some of these techniques have several pitfalls if samples were not collected, processed, and transported in the standard ways and if these techniques were not practiced with extreme caution and precision. This may lead to false-negative/positive results. This may affect the downstream management of the affected cases. These techniques require regular fine-tuning, upgrading, and optimization. The continuous evolution of new strains and viruses belong to the coronaviruses is hampering the success of many classical techniques. There are urgent needs for next generations of coronaviruses diagnostic assays that overcome these pitfalls. This new generation of diagnostic tests should be able to do simultaneous, multiplex, and high-throughput detection of various coronavirus in one reaction. Furthermore, the development of novel assays and techniques that enable the in situ detection of the virus on the environmental samples, especially air, water, and surfaces, should be given considerable attention in the future. These approaches will have a substantial positive impact on the mitigation and eradication of coronaviruses, including the current SARS-CoV-2 pandemic.


Subject(s)
COVID-19/diagnosis , High-Throughput Screening Assays/methods , Severe Acute Respiratory Syndrome/diagnosis , Enzyme-Linked Immunosorbent Assay/methods , Fluorescent Antibody Technique/methods , Genome, Viral/genetics , Humans , Middle East Respiratory Syndrome Coronavirus/genetics , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Reverse Transcriptase Polymerase Chain Reaction/methods , Severe acute respiratory syndrome-related coronavirus/genetics , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/genetics , Viral Plaque Assay/methods
16.
Mikrochim Acta ; 188(4): 137, 2021 03 25.
Article in English | MEDLINE | ID: covidwho-1148895

ABSTRACT

The novel corona (SARS-CoV-2) virus causes a global pandemic, which motivates researchers to develop reliable and effective methods for screening and detection of SARS-CoV-2. Though there are several methods available for the diagnosis of SARS-CoV-2 such as RT-PCR and ELSIA, nevertheless, these methods are time-consuming and may not apply at the point of care. In this study, we have developed a specific, sensitive, quantitative and fast detection method for SARS-CoV-2 by fluorescence resonance energy transfer (FRET) assay. The total extracellular protease proteolytic activity from the virus has been used as the biomarker. The specific peptide sequences from the library of 115 dipeptides were identified via changes in the fluorescence signal. The fluorogenic dipeptide substrates have the fluorophore and a quencher at the N- and the C- terminals, respectively. When the protease hydrolyzes the peptide bond between the two specific amino acids, it leads to a significant increase in the fluorescence signals. The specific fluorogenic peptide (H-d) produces a high fluorescence signal. A calibration plot was obtained from the changes in the fluorescence intensity against the different concentrations of the viral protease. The lowest limit of detection of this method was 9.7 ± 3 pfu/mL. The cross-reactivity of the SARS-CoV-2-specific peptide was tested against the MERS-CoV which does not affect the fluorescence signal. A significant change in the fluorescence signal with patient samples indicates that this FRET-based assay might be applied for the diagnosis of SARS-CoV-2 patients. Graphical abstract.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Coronavirus 3C Proteases/metabolism , Fluorescent Dyes/metabolism , Peptides/metabolism , SARS-CoV-2 , Viral Proteins/metabolism , Animals , Biological Assay , COVID-19/microbiology , Chlorocebus aethiops , Fluorescence Resonance Energy Transfer , Humans , Peptide Library , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Vero Cells , Viral Plaque Assay
17.
Virus Genes ; 57(3): 245-249, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1121392

ABSTRACT

In view of the rapidly progressing COVID-19 pandemic, our aim was to isolate and characterize SARS-CoV-2 from Indian patients. SARS-CoV-2 was isolated from nasopharyngeal swabs collected from the two members of a family without any history of (H/O) travel abroad. Both the virus isolates (8003 and 8004) showed CPE on day 3 post-inoculation, viral antigens by immunofluorescence assay and produced distinct, clear and uniform plaques. Infectious virus titers were 5 × 106 and 4 × 106 Pfu/ml by plaque assay and 107.5 and 107 by CPE-based TCID50/ml, respectively. Phylogenetic analysis grouped our isolates with the Italian strains. On comparison with Wuhan strain, 3 unique mutations were identified in nsp3 (A1812D), exonuclease (P1821S) of Orf1ab and spike protein (Q677H) regions, respectively. Both the viruses grouped with Italian strains of SARS-CoV-2 suggesting possible source being the virus imported from Italy. These fully characterized virus isolates will be useful in developing neutralization/virological assays for the evaluation of vaccines/antivirals.


Subject(s)
COVID-19/virology , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Animals , COVID-19 Nucleic Acid Testing , Chlorocebus aethiops , Coronavirus Papain-Like Proteases/genetics , Exonucleases/genetics , Genome, Viral , Humans , India , Mutation , Nasopharynx/virology , Phylogeny , RNA-Dependent RNA Polymerase/genetics , Spike Glycoprotein, Coronavirus/genetics , Travel , Vero Cells , Viral Nonstructural Proteins/genetics , Viral Plaque Assay , Whole Genome Sequencing
18.
Biotechnol Bioeng ; 118(5): 2067-2075, 2021 05.
Article in English | MEDLINE | ID: covidwho-1092502

ABSTRACT

Heat treatment denatures viral proteins that comprise the virion, making the virus incapable of infecting a host. Coronavirus (CoV) virions contain single-stranded RNA genomes with a lipid envelope and four proteins, three of which are associated with the lipid envelope and thus are thought to be easily denatured by heat or surfactant-type chemicals. Prior studies have shown that a temperature as low as 75°C with a treatment duration of 15 min can effectively inactivate CoV. The degree of CoV heat inactivation greatly depends on the length of heat treatment time and the temperature applied. With the goal of finding whether sub-second heat exposure of CoV can sufficiently inactivate CoV, we designed and developed a simple fluidic system that can measure sub-second heat inactivation of CoV. The system is composed of a stainless-steel capillary immersed in a temperature-controlled oil bath followed by an ice bath, through which virus solution can flow at various speeds. Flowing virus solution at different speeds, along with temperature control and monitoring system, allows the virus to be exposed to the desired temperature and treatment durations with high accuracy. Using mouse hepatitis virus, a betacoronavirus, as a model CoV system, we identified that 71.8°C for 0.51 s exposure is sufficient to obtain >5 Log10 reduction in viral titer (starting titer: 5 × 107 PFU/ml), and that when exposed to 83.4°C for 1.03 s, the virus was completely inactivated (>6 Log10 reduction).


Subject(s)
Betacoronavirus/physiology , Hot Temperature , Virus Inactivation , Murine hepatitis virus/physiology , Viral Plaque Assay
19.
Br J Pharmacol ; 178(3): 626-635, 2021 02.
Article in English | MEDLINE | ID: covidwho-1066635

ABSTRACT

BACKGROUND AND PURPOSE: Currently, there are no licensed vaccines and limited antivirals for the treatment of COVID-19. Heparin (delivered systemically) is currently used to treat anticoagulant anomalies in COVID-19 patients. Additionally, in the United Kingdom, Brazil and Australia, nebulised unfractionated heparin (UFH) is being trialled in COVID-19 patients as a potential treatment. A systematic comparison of the potential antiviral effect of various heparin preparations on live wild type SARS-CoV-2, in vitro, is needed. EXPERIMENTAL APPROACH: Seven different heparin preparations including UFH and low MW heparins (LMWH) of porcine or bovine origin were screened for antiviral activity against live SARS-CoV-2 (Australia/VIC01/2020) using a plaque inhibition assay with Vero E6 cells. Interaction of heparin with spike protein RBD was studied using differential scanning fluorimetry and the inhibition of RBD binding to human ACE2 protein using elisa assays was examined. KEY RESULTS: All the UFH preparations had potent antiviral effects, with IC50 values ranging between 25 and 41 µg·ml-1 , whereas LMWHs were less inhibitory by ~150-fold (IC50 range 3.4-7.8 mg·ml-1 ). Mechanistically, we observed that heparin binds and destabilizes the RBD protein and furthermore, we show heparin directly inhibits the binding of RBD to the human ACE2 protein receptor. CONCLUSION AND IMPLICATIONS: This comparison of clinically relevant heparins shows that UFH has significantly stronger SARS-CoV-2 antiviral activity compared to LMWHs. UFH acts to directly inhibit binding of spike protein to the human ACE2 protein receptor. Overall, the data strongly support further clinical investigation of UFH as a potential treatment for patients with COVID-19.


Subject(s)
Heparin/pharmacology , SARS-CoV-2/growth & development , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antiviral Agents/pharmacology , Chlorocebus aethiops , Heparin/metabolism , Heparin/therapeutic use , Heparin, Low-Molecular-Weight/pharmacology , Protein Binding/drug effects , Spike Glycoprotein, Coronavirus/metabolism , Viral Plaque Assay , COVID-19 Drug Treatment
20.
Biomed Pharmacother ; 133: 111037, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1059801

ABSTRACT

COVID-19 is a global pandemic, with over 50 million confirmed cases and 1.2 million deaths as of November 11, 2020. No therapies or vaccines so far are recommended to treat or prevent the new coronavirus. A novel traditional Chinese medicine formula, Taiwan Chingguan Yihau (NRICM101), has been administered to patients with COVID-19 in Taiwan since April 2020. Its clinical outcomes and pharmacology have been evaluated. Among 33 patients with confirmed COVID-19 admitted in two medical centers, those (n = 12) who were older, sicker, with more co-existing conditions and showing no improvement after 21 days of hospitalization were given NRICM101. They achieved 3 consecutive negative results within a median of 9 days and reported no adverse events. Pharmacological assays demonstrated the effects of the formula in inhibiting the spike protein/ACE2 interaction, 3CL protease activity, viral plaque formation, and production of cytokines interleukin (IL)-6 and tumor necrosis factor (TNF)-α. This bedside-to-bench study suggests that NRICM101 may disrupt disease progression through its antiviral and anti-inflammatory properties, offering promise as a multi-target agent for the prevention and treatment of COVID-19.


Subject(s)
Antiviral Agents/therapeutic use , Drugs, Chinese Herbal/therapeutic use , Adolescent , Adult , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2/drug effects , Coronavirus 3C Proteases/drug effects , Drug Compounding , Drugs, Chinese Herbal/adverse effects , Drugs, Chinese Herbal/pharmacology , Female , Humans , Interleukin-6/antagonists & inhibitors , Male , Medicine, Chinese Traditional , Middle Aged , Negative Results , Spike Glycoprotein, Coronavirus/drug effects , Treatment Outcome , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Viral Plaque Assay , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL